|
NOAO IRAF TNX World Coordinate System |
The TNX World Coordinate System is a non-standard system for evaluating celestial coordinates from the image pixel coordinates. It follows the the FITS conventions for undistorted tangent plane projections but adds a non-linear distortion term to the evaluation. This discussion concentrates on the non-linear extension and assumes the reader understands the FITS WCS conventions including applying a tangent plane projection. The reference for the FITS WCS standard for undistorted celestial coordinates systems is Representations of celestial coordinates in FITS Calabretta, M. R., and Greisen, E. W., Astronomy & Astrophysics, 395, 1077-1122, 2002. (PDF, HTML). (These links to the publisher's web site are currently available by subscription only. Reprints are available from the author's web site in PDF format.)
The TNX World Coordinate System projection has a FITS keyword representation as illustrated in figure 1.
WCSASTRM= 'ct4m.19990714T012701 (USNO-K V) by F. Valdes 1999-08-02' / WCS Source WCSDIM = 2 / WCS dimensionality CTYPE1 = 'RA---TNX' / Coordinate type CTYPE2 = 'DEC--TNX' / Coordinate type CRVAL1 = 310.08145293602507 / Coordinate reference value CRVAL2 = 20.663666538998399 / Coordinate reference value CRPIX1 = 4268.3258 / Coordinate reference pixel CRPIX2 = 2256.2481 / Coordinate reference pixel CD1_1 = -6.8295807e-08 / Coordinate matrix CD2_1 = 7.3313414e-05 / Coordinate matrix CD1_2 = 7.374228e-05 / Coordinate matrix CD2_2 = -1.1927219e-06 / Coordinate matrix WAT0_001= 'system=image' / Coordinate system WAT1_001= 'wtype=tnx axtype=ra lngcor = "3. 4. 4. 2. -0.3171856965643079 -0.015' WAT1_002= '0652479325533 -0.3126038394350166 -0.1511955040928311 0.002318100364' WAT1_003= '838772 0.01749134520424022 -0.01082784423020123 -0.1387962673564234 ' WAT1_004= '-4.307309762939804E-4 0.009069288008295441 0.002875265278754504 -0.0' WAT1_005= '4487658756007625 -0.1058043162287004 -0.0686214765375767 " ' WAT2_001= 'wtype=tnx axtype=dec latcor = "3. 4. 4. 2. -0.3171856965643079 -0.01' WAT2_002= '50652479325533 -0.3126038394350166 -0.1511955040928311 0.00553481957' WAT2_003= '8784082 0.01258790793029932 0.01016780085575339 0.01541083298696018 ' WAT2_004= '0.03531979587941362 0.0150096457430599 -0.1086479352595234 0.0399806' WAT2_005= '086902122 0.02341002785565408 -0.07773808393244387 " '
The WCSASTRM keyword is just for documentation. The WCSDIM keyword will always be 2. That this is a TNX projection is indicated by the CTYPE keywords. These keywords also indicate that the first image axis corresponds to RA and the second to DEC.
The TNX projection is evaluated as follows.
xi = CD1_1 * (x - CRPIX1) + CD1_2 * (y - CRPIX2) eta = CD2_1 * (x - CRPIX1) + CD2_2 * (y - CRPIX2)
xi' = xi + lngcor (xi, eta) eta' = eta + latcor (xi, eta)
The non-linear functions lngcor(xi,eta) and latcor(xi,eta) are polynomial functions with coefficients stored as FITS keywords under the indexed WATj_nnn keywords. The j refers to the image axis and the nnn give a sequence number. The cards for a particular image axis are sorted by the sequence number and then concatenated together into one long string. Take care not to add spaces between the concatenated strings since the coefficients may be split across strings.
The long string for each image axis is composed of a set of keyword/value pairs where the value is quoted if it contains whitespace. Figure 2 shows how the WAT keywords in figure 1 would be decomposed into parameters and coefficients.
AXIS 1 AXIS 2 ---------------------------- -------------------------- wtype=tnx wtype=tnx axtype=ra axtype=dec lngcor = latcor = 3. 3. 4. 4. 4. 4. 2. 2. -0.3171856965643079 -0.3171856965643079 -0.0150652479325533 -0.0150652479325533 -0.3126038394350166 -0.3126038394350166 -0.1511955040928311 -0.1511955040928311 0.002318100364838772 0.005534819578784082 0.01749134520424022 0.01258790793029932 -0.01082784423020123 0.01016780085575339 -0.1387962673564234 0.01541083298696018 -4.307309762939804E-4 0.03531979587941362 0.009069288008295441 0.0150096457430599 0.002875265278754504 -0.1086479352595234 -0.04487658756007625 0.0399806086902122 -0.1058043162287004 0.02341002785565408 -0.0686214765375767 -0.07773808393244387
The list of coefficients are interpreted as follows.
xin = (2 * xi - (ximax + ximin)) / (ximax - ximin) etan = (2 * eta - (etamax + etamin)) / (etamax - etamin)
lngcor(xi,eta) = sum (Cmn * Pmn(xi,eta)) latcor(xi,eta) = sum (Cmn * Pmn(xi,eta))
Representing the coeffients as Cmn for the polynomials Pmn, where m and n are the powers of xi and eta, they are ordered as
C00 C10 C20 C30 ... C01 C11 C21 C31 ... C02 C12 C22 C32 ... C03 C13 C23 C33 ...
In the example with the half cross-terms and orders of 4 the ten coefficients would be C00, C10, C20, C30, C01, C11, C21, C02, C12, and C03.
The polynomials Pmn are defined below. The chebyshev and legendre polynomials are define iteratively as functions of the normalized coordinates defined earlier.
Pmn = xi ** m * eta ** n (polynomial) Pmn = Pm(xin) * Pn(etan) (chebyshev) P0(xin) = 1.0 P1(xin) = xin Pm+1(xin) = 2.0 * xin * Pm(xin) - Pm-1(xin) P0(etan) = 1.0 P1(etan) = etan Pn+1(etan) = 2.0 * etan * Pn(etan) - Pn-1(etan) Pmn = Pm(xin) * Pn(etan) (legendgre) P0(xin) = 1.0 P1(xin) = xin Pm+1(xin) = ((2m+1) * xin * Pm(xin) - m * Pm-1(xin))/ (m+1) P0(etan) = 1.0 P1(etan) = etan Pn+1(etan) = ((2n+1) * etan * Pn(etan) - n * Pn-1(etan))/ (n+1)
In the example with with a simple polynomial the functions would be given as follows.
lngcor/latcor = C00 + C10 * xi + C20*xi^2 + C30 * xi^3 + C01 * eta + C02*eta^2 + C03 * eta^3 + C11 * xi*eta + C21 * xi^2*eta + C12 * xi*eta^2